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Abstract

Text-to-image diffusion models have demonstrated unprecedented capabilities
for flexible and realistic image synthesis. Nevertheless, these models rely on a
time-consuming sampling procedure, which has motivated attempts to reduce
their latency. When improving efficiency, researchers often use the original dif-
fusion model to train an additional network designed specifically for fast image
generation. In contrast, our approach seeks to reduce latency directly, without
any retraining, fine-tuning, or knowledge distillation. In particular, we find the
repeated calculation of attention maps to be costly yet redundant, and instead
suggest reusing them during sampling. Our specific reuse strategies are based on
ODE theory, which implies that the later a map is reused, the smaller the dis-
tortion in the final image. We empirically compare these reuse strategies with
few-step sampling procedures of comparable latency, finding that reuse generates
images that are closer to those produced by the original high-latency diffusion
model.

Keywords: Efficient Sampling, Attention Reuse, Diffusion Models

1 Introduction

Diffusion probabilistic models (DPMs) have become increasingly popular for text-
conditioned image generation [1-4]. While DPMs can generate images of unprece-
dented quality, they require considerable amounts of time in order to do so, motivating
researchers to improve their efficiency. Currently, there are two main approaches for
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Fig. 1 This figure compares a step-reduced sampler with our best reuse strategy of (approximately)
the same latency. The reuse strategy clearly outperforms the step-reduced sampler at producing
realistic images that match the original 20-step sampler.

improving DPM efficiency: (1) decrease the number of calls to the U-Net!, and (2)
decrease the cost of calling the U-Net. This is typically facilitated by knowledge distil-
lation or alterations to the U-Net’s training objective. Notably, there has been minimal
work on methods to improve a DPM’s latency without any retraining, fine-tuning, or
knowledge distillation.

Our paper focuses on this gap, by directly removing an expensive aspect of the sam-
pling procedure that we find to be redundant: the repeated calculation of attention
maps. Specifically, instead of recalculating attention maps from the key-query pairs
at each step, the most recently calculated attention maps are stored in memory and
can be reused during the sampling procedure. The main contribution of this paper is
identifying and examining the reuse strategies that produce the smallest distortions
to the original image. In particular:

1. We locate a heuristic reuse strategy by analysing error propagation in the reverse
diffusion process.

2. We adapt this heuristic strategy to account for dependencies between different steps
of the sampling procedure that the heuristic strategy neglects.

3. We show that our reuse strategies outperform step-reduced samplers of comparable
latency.

2 Related Work

Sampling from a Diffusion Model. The forward diffusion process iteratively injects
noise into an input image in order to transform it into a standard Gaussian. In the
reverse direction, de-noising involves repeatedly invoking a decoder, which is typi-
cally trained to predict a score function, Vlog ¢:(x;). This is either learned directly,
sg (x4, t), or indirectly via error estimation, €y (x¢,t). Once the network is trained,
the model must be paired with a sampling procedure that uses information from the
decoder to reproduce the original image from Gaussian noise, potentially with the aid

1A U-Net is the deep neural network that powers DPMs.



of a prompt. The reverse diffusion process is often modelled by the following ODE [5]:

dx 1

—° = [tz — 597 (1) Valog ai(w), (1)
dt 2

where f(t), g(t) are determined by the noise schedule. Successfully solving this
equation corresponds to the DPM sampling a realistic image.

Decreasing the Number of U-Net Calls. A DPM’s latency is often reduced by
lowering the total number of steps in its sampling procedure. But by shortening a
DPM’s sampling process, a developer might degrade its performance, as shown in
Figure 1. Therefore, researchers typically use knowledge distillation to maintain sample
quality, training a new (step-reduced) network to emulate the original (high-latency)
DPM. For example, progressive distillation [6, 7] iteratively trains a student network
to predict the original DPM’s two-step output in a single step, repeatedly halving the
number calls to the U-Net. Since then, a variety of new methods have been proposed
to extend this simple approach. Several researchers [8-10] have introduced a notion
of consistency, producing single-step solvers that generate (or sample from) any point
along the whole diffusion trajectory. Alternatively, Liu et al. [11] reduced the curvature
of the score function, which made the U-Net more accurate for large step-sizes.

All of the methods listed above reduce latency with a minimal impact on sample
quality. However, they require some form of (re-)training and, as such, can’t directly
bolster pre-trained DPMs. In contrast, Lu et al. [12] leveraged ODE-theory to directly
improve DPM’s sampling procedure. Specifically, they derived an analytical solution
to the reverse diffusion ODE expressed as an exponentially weighted integral. Based
on this, they developed a numerical method that approximates the Taylor expansion
of the exponential integral, allowing the U-Net to track the curvature of score function
with larger step-sizes [13]. Unlike the approaches that require knowledge distillation,
this method can be directly applied to improve pre-trained DPMs in a ‘plug-and-play’
[12] manner.

Decreasing the Cost of U-Net Calls. Some researchers focus on reducing the cost
of a single step rather than reducing the total number of steps. In particular, they
perform knowledge distillation by training a small (i.e. low-cost) U-Net to emulate the
large U-Net used by the original DPM. For example, Kim et al. [14] manually removed
blocks from the U-Net that powers Stable Diffusion [15] and trained it to approximate
the unpruned network. Li et al. [16] developed this manual approach by pruning
the U-Net in accordance with a formalised trade-off between performance (CLIP-
score) and latency. Both of these papers retain sample quality by employing knowledge
distillation, but can the cost of calling a U-Net be reduced without (re-)training?

Bhojanapalli et al. [17] improved transformers’ efficiency by exploiting redundancies
in their repeated calculation of attention maps. These maps are particularly con-
sequential for latency as their calculation involves a costly outer product between
a high-dimensional key and query. Upon finding a reasonable degree of similarity
between a transformer’s attention maps, they reused an arbitrary subset of the first
layer’s maps in the following layers. This approach can be applied in a ‘plug-and-play’



manner to any pre-trained transformer, as it doesn’t require any retraining or knowl-
edge distillation. We wonder whether similar redundancies exist in the attention maps
produced by DPMs, and if so, whether this can be exploited to reduce the cost of
calling a DPM’s U-Net.

3 Analysis

We start this section by examining redundancies in the repeated calculation of atten-
tion maps by DPMs. Upon finding a significant degree of redundancy, we then define
and locate reuse strategies that attempt to optimally exploit this redundancy. In
particular, we propose a simple strategy by considering the Lyapunov exponents (a
common tool for studying ODEs) of the reverse diffusion process. All of the figures
presented in this section are run using Stable Diffusion v1.5 with 20-step DDIM [18]
as the (base) sampling procedure.

Attention Map Redundancy. We conjecture that DPM attention maps are (pre-
dictably) similar to their temporally adjacent neighbours. As such, we empirically
investigate the normalised L1 difference [17] between them, averaged over a variety of
prompts. Figure 2 illustrates a high degree of similarity, in which temporally adjacent
maps are (on average) within 0.2 of each other. This suggests a relatively stable degree
of redundancy in the repeated calculation of attention maps that can be exploited to
reduce a DPM’s latency. Instead of repeatedly calculating attention maps from key-
query pairs, certain maps can be used more than once. But what exactly would this
look like?

Fig. 2 Normalised L1-distance between the Self- (left) and Cross- (right) attention maps A(s) and
A(s-1) for an unperturbed flow. This is generated from 200 random ImageNet prompts. The shaded
region includes one standard deviation.

Defining Reuse and Success. Let Ai denote the attention map? calculated in the
s-th call of the I-th layer of the U-Net in the reverse diffusion process. Moreover, let

2In fact, the conditioned and unconditioned prompts both have a corresponding cross- and self- attention
map. For brevity, we refer to just one map at each layer and step.



M denote a set of memory variables which store the maps that we may wish to
reuse. During sampling, set M b Als every time that an attention map is directly
calculated from key-query pairs. Then, for a reuse step r > 1, set Alr +— M, instead
of directly calculating Ai from key-query pairs. We parameterise a reuse strategy by
a binary vector, w, where each entry corresponds to a step in the sampling procedure.

In particular, w5 = 1 indicates that the attention map A; is directly calculated from
a key-query pair and s = 0 denotes reuse at sampling step s. So the reuse strategy
w=1I[1, 1, 0, 0, 1, O] for a 6-step sampling procedure would directly calculate the
attention maps from key-query pairs at step 1, 2 and 5. Consequently, it would reuse
the second attention map in steps 3 and 4 and reuse the fifth attention map at step 6.

While we have now defined what reuse involves, it is also important to consider when
it can be deemed successful. In this paper, we consider a reuse strategy to be successful
if it generates images that are close to the original DPM’s output given the same
prompt and initial conditions, as measured by PSNR. A looser definition of success
would require only that reuse strategies generate realistic outputs that align with their
prompt. This could be evaluated by measuring the outputs’ CLIP-Score or FID with
a distribution of natural images.

The PSNR-measurable definition of success is preferable as it’s easier to evaluate and
less subjective. In particular, the PSNR between two samples can be calculated quickly,
which facilitates fast search algorithms. Moreover, PSNR doesn’t depend on an arbi-
trary choice of natural images, unlike FID and CLIP. For the reasons outlined above,
our reuse strategies are optimised (via PSNR) to approximate the behaviour of a nor-
mal DPM, which itself could be trained to optimise FID or CLIP-Scores. Nevertheless,
in Section 5 we present results regarding both characterisations of success.

Locating a Successful Reuse strategy. A brute force approach for finding a suc-
cessful reuse strategy would evaluate all possibilities and select the one whose output
is closest to the true sample. However, an exhaustive search is infeasible given the
exponential growth in possible strategies as the number of steps increases. As such,
we probe the diffusion process for insights that might warm-up our search. A common
tool for analysing dynamical systems (z;) are ‘Lyapunov exponents’ [19] which assume
that errors (0z;) grow (or shrink) exponentially in time. Formally, they assume there
exists a k € R\{0} such that for every t > 7 > 0:

|62¢| ~ €7 |62+ (2)

For our case, let x; represent the reverse diffusion process, where x is Gaussian noise
and xp is a sample. Furthermore, let A ; denote the attention maps at sampling step s.
Adapting Lyapunov exponents for a reverse diffusion process in which attention maps
are perturbed, we conjecture that there exists a A > 0 such that for every step, s € N
and corresponding timestep ts with T' > ¢4 > O:

MT—ts) SA,| o et

[0 < e 0A | (3)



That is, the change in the final sample (dzr) is proportional to the change in the
attention maps (JA;) introduced by reuse at step s, subject to an exponential growth
over the remaining steps. If our conjecture is true, then a heuristic strategy that follows
from this would be to reuse (i.e., perturb the attention map) as late as possible in the
sampling procedure, maximising s.

We will refer to this HeURuistic Reuse StrategY as HURRY, defined for r reuse steps
in an a N-step sampler by:

HURRY = [1/0] = |1, ..., 1,0, ..., o} (4)

Equally, if A were negative, then the error would shrink exponentially, suggesting
that reuse is most suitable early in the sampling procedure. Figure 3 empirically
explores whether the (attention-adapted) Lyapunov exponent appears to be positive
or negative. We find that the impact of perturbations to the U-Net’s attention maps
decrease (roughly) monotonically over the sampling procedure, at least between steps
one and eighteen (inclusive). The correlation between the empirical data and the
theoretical curve (exponential decay) is 0.96, for the first eighteen steps. This decay
supports our conjecture that the (attention-adapted) Lyapunov exponent of the reverse
diffusion process is positive, see Equation 3.

Fig. 3 The Ll-distance between a sample produced by a normal DPM and a DPM where the
attention map is perturbed at sampling step s. Specifically, the pre-softmax attention map is perturbed
(in proportion to its norm) at step s. The results are scaled into the range [0,1] and then averaged over
200 random ImageNet prompts; the shaded region includes one standard deviation. The orange curve
is of the form kie %25, tuned to approximate the empirical results between steps 1 and 18 (inclusive).

4 Method

In the Section 3 we developed a reuse strategy based on the following conjectures:
(1) The temporally-adjacent attention maps of a pre-trained DPM are (predictably)



similar to each other; (2) The Lyapunov exponent of a pre-trained DPM is positive.
The first conjecture implies that reuse a sensible idea and the second implies that if
you are going to reuse, it is best to do it late into the sampling procedure. We provided
supporting evidence for each of these conjectures in figures 2 and 3, respectively.

However, HURRY also relies on an assumption that we have so far neglected. In
particular, it assumes that the suitability of step s for reuse is independent of whether
the model has already reused at step r» < s. This might be problematic when creating
reuse strategies that contain more than one reuse step. For instance, a ‘later is better’
strategy might be ideal for a single instance of reuse. But, clustering several reuse steps
towards the end of the sampling procedure without any intermediate recalculations
might be sub-optimal.

Perturbing HURRY. To address this limitation, we evaluate perturbations of our
heuristic reuse strategy to determine whether they perform unexpectedly well due to
some unforeseen dependencies. Specifically, we set HURRY as our initial ‘Best Strat-
egy’ and then perform a greedy search to locate the closest locally optimal strategy.
A reuse strategy is said to be locally optimal if it outperforms all strategies that are
one bit-flip away; where a bit-flip swaps a reuse and non-reuse step®. We refer to the
result of this search algorithm as PHAST: Perturbed Heuristic Attention STrategy -
this is our second reuse strategy. The utility function below, U, is PSNR in our case.

Algorithm 1 Search Algorithm for PHAST
Best Strategy < HURRY
Optima(0) <— U(Best Strategy)
Run <0
repeat
Run < Run+1
Optima(Run) < Optima(Run — 1)
for w € BitFlipSet(Best Strategy)
if U(w) > Optima(Run) + ¢
Best Strategy <
Optima(Run) < U(w)
end if
end for
until Optima(Run) = Optima(Run — 1)
return Best Strategy

Algorithm 1 has a number of desirable properties. One such property is that, unlike
evolutionary approaches, it’s deterministic. This determinism stems from the fact that
it (effectively) performs gradient descent on the set of reuse strategies, calculating the
finite difference between adjacent strategies w.r.t. to PSNR, and moving to (approx-
imately*) minimise this. Another desirable property is that it’s quick. For an N-step
sampling procedure with r reuse steps, there are only O(N?) bit-flipped strategies,

3This is the smallest strategy mutation that preserves the number of reuse steps.
4We include a small threshold, ¢, to prevent insignificant rounds of bit flipping.



in comparison to an exhaustive search, which has O(N") strategies. In the case of
a 20-step sampling procedure with 10 reuse steps, this corresponds to one round of
bit-flipping covering 100 strategies, while an exhaustive search must cover 184,756
strategies.

5 Evaluation

In this section, we begin by examining the effectiveness of algorithm 1 at locating
the optimal reuse strategy. Following this, we compare the performance of attention
reuse and step-reduction across various datasets, models, and sampling procedures.
Our results demonstrate that reuse outperforms step-reduction in terms of PSNR and
is competitive w.r.t. FID and CLIP-Score.

Comparison with Alternative Reuse Strategies. How does algorithm 1 compare
to an exhaustive search? To investigate this, we evaluated every reuse strategy in the
space of 10-step DPM++ samplers with 3 reuse steps. As a result of this exhaustive
search, we found HURRY to be the third-best strategy, with the two best strategies
differing by a single bit-flip:

1. Strategy = [1,1,1,1,1, 1,0,1,0,0], PSNR = 27.2 (i.e., PHAST)
2. Strategy = [1,1,1,1,1, 1,0,0,1,0], PSNR = 26.8
3. Strategy = [1,1,1,1,1, 1,1,0,0,0], PSNR = 25.9 (i.e., HURRY)

While we can’t perform an exhaustive search on larger spaces we find that algorithm
1 rapidly settles into a local optima, typically within a single bit-flip. For instance,
given a 20-step DDIM sampler with 10 reuse steps algorithm 1 terminates with the
following solution:

PHAST = [1,1,1,1,1, 1,1,1,0,1, 0,0,0,1,0, 0,0,0,0,0]

These results indicate that HURRY is a near-optimal strategy, stunted by it’s assump-
tion of step-wise independence, which PHAST amends. To further support this
assessment, and given the infeasibility of an exhaustive search in larger spaces, we
compare our reuse strategies with several alternatives in Figure 4:

Strategy ‘ No Reuse Random Early Late PHAST
PSNR ‘ ref. 15.98 15.77 18.77 21.16

Sample

‘Macaw’

Fig. 4 A comparison of PSNR between our reuse strategies and several alternatives, for a 20-step
DDIM sampler with 10 reuse steps for the prompt ‘Macaw’. The randomly selected reuse strategy
was [1,1,1,0,1, 0,0,0,0,0, 0,0,1,1,1, 1,1,1,0,0].



Initial Comparison Between Step-Reduction and Reuse. We have now demon-
strated that HURRY and PHAST are promising reuse strategies. But do they
outperform step-reduction, the canonical approach to reducing latency? Figure 5 com-
pares step-reduced DDIM samplers with reuse strategies acting on a full 20-step DDIM
sampler, for latencies between 3500ms and 5500ms. The results demonstrate that our
reuse strategies consistently outperform step-reduced samplers at comparable laten-
cies. Figure 6 visually supports these results with samples taken from a cross-section
of Figure 5, at a latency of ~4000ms. The samples generated by the reuse strategies
are more similar to those produced by the original sampler than their step-reduced
counterparts. Notably, the step-reduced samplers produce distorted images — such as
the firetruck which looks more like a building, the detached tail of the Terrier, or the
distorted macaw.

The latencies in Figure 5 are calculated by appropriately summing two components:
(1) the latency of a full U-Net call; and (2) the latency of a reuse U-Net call. These
latencies are estimated by calculating the share of total clock cycles used by each block
of the U-Net and scaling the total latency accordingly. We establish that a full U-
Net call has an approximate latency of 152ms, and reuse® has an approximate latency
of 47ms. For each number of reuse steps (i.e., each latency) in Figure 5, PHAST is
separately selected by algorithm 1.

Fig. 5 This figure compares the PSNR of PHAST, HURRY, and DDIM for comparable latencies.
The PSNR is taken over 200 ImageNet labels as prompts.

Further Comparisons Between Step-Reduction and Reuse. So far, this paper
has focused (almost solely) on the PSNR, of modifications to a 20-step DDIM sam-
pler acting on Stable Diffusion (SD) v1.5 with ImageNet labels as prompts. We must
now demonstrate that our reuse strategies also excel with different datasets, models,
sampling procedures, and measures of performance. Table 1 starts this wider evalu-
ation by taking the PSNR and FID for SD v1.5 on numerous datasets. Additionally,
it evaluates PHAST on a more powerful model (SDXL) with a complex dataset (Par-
tiPrompts). For this table, and all datasets in this section, we don’t re-run algorithm

5We derive this latency under the assumption that reuse can reduce the latency of attention blocks by
90% - a conservative estimate.
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Fig. 6 Visual comparison of the different sampling techniques for the prompts (column-wise):
‘English Setter’; ‘laptop, laptop computer’; ‘Sealyham terrier Sealyham’; ‘macaw’; ‘fire engine, fire
truck’; ‘cab, hack, taxi, taxicab’. The samplers are (row-wise): 20-step DDIM; 13-step DDIM; HURRY
with 10 reuse steps; PHAST with 10 reuse steps. The final three samplers all have a latency of
~4000ms.

1. As the underlying dynamics of the model are independent of its prompts, we reuse
the same strategy (PHAST) that was selected by algorithm 1 given ImageNet labels
as prompts.

For every dataset in Table 1, PHAST significantly outperforms step-reduction w.r.t.
PSNR. However, they are relatively indistinguishable w.r.t. FID, which suggests that
these approaches generate images that are equally coherent and realistic. Yet, on SDXL
with PartiPrompts (See Fig. 1), the step-reduced sampler generates a bowl of Pho
with an atypical sub-bowl and an impossibly contorted tree that lacks a reflection. As
such, we suggest that the FID might not faithfully track whether or not the image is
realistic. PHAST and HURRY avoid these unrealistic distortions, as they are designed
to maximise fidelity w.r.t. the original model, which was trained to minimise FID.

Model Dataset Method PSNR (1) FID (J)
MS-COCO 2017 Base(13)  17.50 28.22
(5k val., 512x512, See Tab. 2) PHAST 25.90 29.18
MS-COCO 2014 Base(13) 17.53 18.71

SD1.5  (40k val., 512x512) PHAST  26.03 17.62
Instruct-Pix2Pix Base(13) 17.83 59.57
(30k val., 512x512) PHAST 24.98 60.08

SDXL PartiPrompts Base(13) 20.30 202.58
(100 random, 1024x1024) PHAST 29.92 199.88

Table 1 A comparison of PHAST with a step-reduced DPM++ sampler for various datasets and
generative models. The same PHAST strategy, searched for on ImageNet with SD1.5, was used for
all of these evaluations.
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DDIM DPM++

Model Method Lat. (ms)’  Mem. (MiB)*
PSNR (1) CLIP (1) FID ({) PSNR (1) CLIP (1) FID (})
Base(20) ref. 0.2671 28.23 ref. 0.2673 27.11 4052 8091
SD 1.5 Base(13) 17.50 0.2681 28.22 17.16 0.2676 27.39 2664 8091
‘ PHAST 25.90 0.2667 29.18 23.02 0.2664 27.95 2937 12157
PHASTFp16 25.95 0.2667 29.21 23.03 0.2664 27.95 3164 10141
Base(20) ref. 0.2611 31.71 ref. 0.2613 31.66 2090 7273
SD 1.5 Base(13) 17.68 0.2625 31.96 16.93 0.2619 31.16 1382 7273
+ CFG Dist./T  PHAST 28.63 0.2614 32.56 25.34 0.2612 32.66 1517 9093
PHASTEp16 28.63 0.2614 32.57 25.34 0.2612 32.66 1623 8045

T avg. time needed to generate one image when running continuously for 5 minutes on an NVidia A40 (46GB) with maxed-out batch size (DPM-++, full precision).

¥ total memory needed to generate one image (DPM++, full precision).  our reimplementation of ”stage one distillation” from [7].

Table 2 A comparison of our best strategy (PHAST) with a base sampler (DPM++ and DDIM)
on the MS-COCO 2017 validation set, looking at PSNR, CLIP-Score, and FID. We evaluate our
samplers on Stable Diffusion v1.5 and a low-latency distilled alternative that fuses the conditional
and unconditional forward passes into one.

In Table 2, we evaluate PHAST against step-reduction for two samplers (DDIM and
DPM++) on the MS-COCO [20] validation dataset. Algorithm 1 was ran twice to
separately select PHAST for each sampler; however, we found that up to a timestep
rounding error, these two strategies were the same. In particular, by directly comparing
the timesteps (1-1000) rather than the steps (1-20), any differences between the two
reuse strategies reduced to a rounding error. This suggests that our search algorithm
can generalise across different samplers, which is perhaps unsurprising as the U-Net
is unchanged between samplers.

Table 2 shows that PHAST significantly outperforms step-reduction for both samplers
w.r.t. PSNR, yet it is marginally worse for CLIP and FID. But as we’ve previously
alluded to, these more subjective measures of performance might not be completely
faithful (See Figs. 1 and 6). Interestingly, the PSNR of PHAST is consistently larger
for DDIM over DPM++. We attribute this difference to the more linear nature of
DDIM, which might aid reuse.

Along with evaluating PHAST for two different samplers, Table 2 also considers two
different models. The top row is a vanilla version of Stable Diffusion, and the bottom
row evaluates a model whose conditional and unconditional forward passes of the
classifier-free guidance (CFG) are distilled into one, following [7]. In particuar, we
distilled the model using the MS-COCO 2013 training dataset with 4 A100 for 2-3
days®. We observe that even when a model has been additionally optimised, the same
PHAST strategy — searched for on vanilla stable diffusion — results in very similar
behaviour, with a high fidelity (PSNR) and slight reduction in FID and CLIP. This
demonstrates that our reuse strategies can be used in tandem with other approaches
for optimising a DPM’s latency.

In summary, both of the reuse strategies proposed in this paper appear to be optimal
or near-optimal. Moreover, they consistency and significantly outperform step-reduced
samplers w.r.t. PSNR, and remain competitive for the more subjective measures of

8Since Meng et al. didn’t release their code or checkpoints, we had to re-implement their method. As
we’re not interested in improving raw performance of DPMs but to approximate them efficiently, we didn’t
perform a very exhaustive distillation.
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image quality. For a given number of reuse steps, we have shown that the strat-
egy selected using SD v1.5 on ImageNet with a DDIM sampler can generalise across
models, datasets, and sampling procedures.

6 Discussion

The Memory-Latency Trade-Off. The reductions in latency achieved by our reuse
strategies come at the expense of increased memory usage, which is required to cache
the attention maps for reuse. Although Table 2 shows that speedup is not affected
by this extra cost, the possibility for utilising reuse might be limited in memory-
constrained systems. To alleviate this, developers could be to opt for caching attention
maps in reduced precision. For instance, we observe that storing attention maps in
FP16 does not degrade our results (See Tab. 2), but allows us to halve the memory
required to cache attention maps.

We could reduce memory even further by considering 8-bit quantisation —
PHASTnTg with our CFG-distilled model and the DPM++ solver achieves an FID
of 32.65 and PSNR of 25.35. However, we also notice that the overhead of performing
quantisation becomes a bottleneck in this case, hurting latency; this is why we did
not include full comparison. Having said that, we expect that this might be a feasible
way forward for devices that operate on quantised tensors, since the cost of perform-
ing quantisation will be amortized in those cases. We leave further investigation into
memory reduction for future work.

Refining our Reuse Strategies. There are numerous ways to refine the reuse strate-
gies proposed in this paper. For example, the step-wise strategies ignore a natural
axis for search that might bolster performance, namely layer-wise search. Rather than
employing a reuse vector, we might envision a reuse matrix where the rows index the
U-Net’s layers and the columns index a step in the sampling procedure. We excluded
this search from the main body of the paper due to its computational complexity and
limited impact on performance for SD v1.5 (See SM). However, we acknowledge that
for certain DPMs this layer-wise refinement might produce significant improvements
on the proposed reuse strategies.

Additionally, fine-tuning the U-Net to better tolerate reuse might further enhance
performance. This could involve first fixing a reuse strategy, then fine-tuning the model
whilst applying this strategy. Alternatively, the U-Net could be preemptively fine-
tuned to better accommodate reuse strategies in general. For example, a developer
might fine-tune the U-Net with random reuse strategies or modify it to have a more
linear score function. We didn’t investigate this in the paper, as our focus was to create
a training-free method for reducing the cost of calling the U-Net — an area that has
so far been overlooked.

Selecting the Parameters for Reuse. This paper has explored the following prob-
lem: Given an N-step sampling procedure with r reuse steps, how should these reuse
steps be allocated in order to maximise the performance of the model? In reality, N
and r are not necessarily fixed; they could be selected alongside their corresponding
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strategy (7}) to maximise the model’s performance while keeping the latency below
a certain threshold. However, considerable amounts of computation would be required
to solve this constrained optimisation problem. As such, we leave it for developers
to select sensible parameters (N,r) for their specific applications, perhaps via a short
process of trail and error with HURRYY;.

7 Conclusion

This paper introduces two reuse strategies that reduce a DPM’s latency while retain-
ing the original DPM’s weights and number of calls to the U-Net. We started by
analysing the dynamics of the reverse diffusion process, which pointed to a ‘later-is-
better’ reuse strategy. By conducting a local search around this heuristic strategy,
we improved the model’s performance for a fixed latency. Both strategies outper-
formed naive step reduction, especially when remaining faithful to the model’s baseline
behaviour is of primary concern. Moreover, we showed that reuse strategies can gener-
alise across models, sampling procedures, and datasets. We hope that future work can
further investigate redundancies in the reverse diffusion process, and their potential
for improving a DPM’s latency.

Broader Impact. Our work reduces the latency of high-quality DPM image synthesis.
While this may pose societal benefits, DPMs can also be used to produce biased or
harmful content [21]. Reductions in a DPM’s latency might increase the ease with
which malicious actors can produce harmful content.
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