Releasing the Source Code of Language Models via
Conversational Access (Working Draft)

Rosco Hunter!

'Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom

Abstract

Large language models (LLMs) have rapidly matured into sophisticated reasoning machines. As a result, the code that
determines an LLM’s capabilities has since become a powerful asset. Currently, developers are divided on whether to release
(i.e., open-source) or restrict access to the inner workings of their most capable models. Proponents of open-sourcing argue
that it promotes democratisation and innovation in Al, while critics contend that it facilitates misuse. This paper introduces
an intermediate level of model release called Conversational Access (CA). When a model is CA-released, users cannot access
its internals directly; instead, they engage in a dialogue with the LLM, which can modify its behaviour on their behalf. In this
sense, the LLM acts as a helpful intermediary, allowing users to develop and customise a model while retaining the safeguards
of more restrictive approaches. The main focus of this paper is further exploring the benefits and drawbacks of CA models,

including existing examples like OpenAI’s GPT store.

1. Introduction

In recent months, large language models (LLMs) have
demonstrated rapid gains in performance and popularity
[1]. Their ability to approximate, or even outperform,
human responses across a broad spectrum of intellectual
tasks has garnered the world’s attention. A model’s in-
ternals! are a powerful asset, as they determine what an
LLM can and cannot do. The success of these models
raises an important question: Should the general public
be able to access a model’s internals, given its potential
impact on society?

There is disagreement among Al researchers about
whether to expand or limit public access to their most ca-
pable LLMs [2]. Some developers favour open-sourcing,
publishing every detail of their model so that anyone can
utilise, scrutinise, and customise the code. Proponents
of this approach argue that it fosters innovation and
distributes the economic and epistemic value that their
models generate. In contrast, some developers prefer to
keep their code private, limiting access to a trusted group
of collaborators. They argue that withholding their code
from the public domain is the only way to guarantee that
it won’t be fine-tuned for malicious applications, from
writing fake news to designing malware.

In Section 3, we propose an alternative framework for
releasing LLMs that we call Conversational Access (CA).
Rather than a binary choice between a model’s internals
being fully transparent or inaccessible, it introduces a

& rosco.hunter@warwick.ac.uk (R. Hunter)

!In this paper, the model’s ‘internals’ will generally refer to its pro-
grams and parameters, including its architecture; weights; inference
procedure; hyper-parameters; and system prompts. These internals
may also be referred to as its ‘code’ or ‘inner workings’.

middle ground. When an LLM is CA-released, users
cannot directly access its code but instead engage in a
dialogue with the model, which can modify its behaviour
on their behalf. The main benefit of this approach is
that it (ideally) permits users to tailor a model to their
individual needs, without jeopardising the security of the
underlying code.

Despite these advantages, Section 3 also examines the
unique vulnerabilities of CA models, including their ca-
pacity to produce unexpected or uncontrollable harms.
In particular, we observe that early CA models, like Ope-
nAT’s GPT-store [3], are already prone to leak information
or follow harmful (albeit seemingly innocuous) instruc-
tions. Moreover, we discuss cases where a CA-released
LLM might misinterpret a prompt, resulting in undesir-
able changes to the model’s source code which are hidden
from the user. In the worst case, conversational access
doesn’t prevent harms, it simply hides the underlying
causes from external scrutiny.

This paper acknowledges and attempts to address these
legitimate concerns. In particular, we accept that the
current generation of LLMs are opaque and occasionally
harmful. As such, in this early stage of technological
progress, we recommend a cautious approach to CA-
release, providing users with a relatively limited capacity
to customise their models. However, as safeguards im-
prove, users could be granted more freedom to tailor a
model to their individual needs. The paper concludes
by emphasising this distinctive advantage of CA models,
uniquely positioning them to match the ever-changing
demands for a customisable yet safe LLM ecosystem.

mailto:rosco.hunter@warwick.ac.uk

2. Background on Model Access

Broadly speaking, LLMs typically fall into three tiers of
accessibility [4]. In this section, we will examine the
main benefits and drawbacks of each tier.

+ Closed models, like Gopher [5], are entirely inac-
cessible beyond the lab or company that produced
them.

» Queryable models, like Chat-GPT [6], can be
prompted, with responses appearing on a gated?
user interface, but the model’s internals are kept
from the public domain.

» Open-Source models, like GPT-J [7], make the
model’s internals publicly available.

2.1. Closed Models

Closed models minimise the likelihood of misuse by re-
stricting access to a small group of trusted individuals.
This approach has been applied to control other dan-
gerous technologies where legislator’s main concern is
preventing misuse. For instance, countries that restrict
firearm ownership tend to have lower rates of firearm-
related homicides [8]. On a more existential scale, nuclear
non-proliferation treaties prevent countries without nu-
clear weapons from acquiring them [9]. The logic is that
an LLM, firearm, or nuclear weapon can’t be misused by
someone who can’t even access it.

However, the secrecy of these models blunts their effec-
tiveness and social value. Firstly, there is a loss in terms
of the model’s quality and objectivity. The development
and evaluation of a closed model can only draw from the
skills and perspectives of a limited number of individuals.
As a result, its design might be naive, and the resulting
outputs could exhibit bias [10]. Secondly, there is a loss
in terms of the public interest. Being unable to access the
model in any form, the general public is excluded from
the knowledge that these models offer. This leads to an
epistemic inequality in favour of the highly-resourced AI
companies.

2.2. Open-Source Models

On the other extreme, open-source models provide unfet-
tered access to the widest possible audience. Proponents
argue that open-sourcing facilitates external scrutiny
from a global community of researchers, helping to rec-
tify any lingering biases or limitations of the original
model [11, 12]. Furthermore, it fosters innovation, as ev-
ery developer has the opportunity to read, reuse, or build
upon the code and weights of an open-source model. This

Gating a model involves putting controls in place (i.e., through an
API) so that access to the model can be restricted or removed.

is particularly consequential for the most capable mod-
els, as their training requires a scale of computational
resources that only a few companies possess.

The momentum and scale of open-source innovation is
staggering. Meta’s core family of open-source language
models, LLaMA [13], became available in February 2023.
By September, Meta reported that LLaMA-based models
had been downloaded through Hugging Face over 30 mil-
lion times, with tens of thousands of startups using their
latest model [14]. In this same report, Meta claimed that
the open-source community had produced variants of
LLaMA with “improvements of up to 46% for benchmark
datasets”.

However, the openness of these models also poses risks,
as anyone can access and misuse them. In July 2023, mem-
bers of the Senate Subcommittee on Privacy, Technology,
and the Law expressed their concerns in a letter to Meta’s
CEO [15]. In this letter, they warned of the potential for
LLaMA to facilitate “misuse in spam, fraud, malware, pri-
vacy violations, harassment, and other wrongdoing and
harms.” They followed this by noting that “even in the
short time that generative Al tools have been available
to the public, they have been dangerously abused”

Not only do open-source models lack robust safeguards to
prevent direct misuse, but their weights can even be fine-
tuned specifically for malicious applications. Fine-tuning
tailors the weights of a model by training it to perform
well on a specific task [16]. This is often employed to
improve a model’s performance for tasks, such as gram-
mar correction or medical diagnostics [17]. However,
it can also make a model more dangerous, especially if
the training data is harmful [18]. By fine-tuning LLaMA
for 100 GPU hours on adversarial data, Gade et al. [19]
almost completely removed all safeguards, observing a
97% drop in the number of harmful instructions that the
model refused to answer.

Even more concerning, after an open-source model is
released, there is no way to retract it from the public
domain® if it causes excessive harm. They remain perpet-
ually accessible for direct misuse or malicious fine-tuning,
with a digital footprint that is impossible to erase. This
perpetual accessibility would be catastrophic to society
in the event that an open-source model could describe
novel toxins [20, 21] or ransomware [22], when appro-
priately prompted and fine-tuned. While we are yet to
witness any truly catastrophic capabilities of open-source
LLMs [23], there are already concerning signs [24, 25].
Moreover, the likelihood of such risks increase with each
successive generation of language models. Given the po-
tential for harm with open-source models and the over-

*This irreversibly is of particular concern given the inherent difficulty
in accurately anticipating the (long-term) impact of a technology
before it’s released.

centralisation of closed models, is there a compromise?

2.3. Queryable Models

Straddling the extremes, queryable models mitigate un-
desirable aspects of both approaches. Unlike closed
models, anyone can elicit their knowledge and scruti-
nise their outputs through prompting. However, unlike
open-sourcing, the activity of queryable models can be
monitored and constrained. Even in the event of unex-
pected harm, model access can be temporarily rolled back
while patches are applied. Unfortunately, despite these
advantages, queryable models still exhibit a number of
concerning faults.

Firstly, queryable models don’t quite offer the same safety
guarantees as closed models. While language models are
improving at solely producing benign responses, outputs
that are harmful or inaccurate still occur [22, 24]. Given
a queryable model, members of the public are bound to
actively seek or inadvertently encounter these harmful
outputs. Secondly, these models can’t be scrutinised to
quite the same extent as an open-source approach. Al-
though a queryable model’s outputs can be statistically
tested for various biases [26], they fall short of provid-
ing all of the relevant information that external auditors
might require.

However, perhaps the largest deficit of queryable models
is that their code can’t be modified. In order to prevent
misuse, the code that underlies a queryable model is inac-
cessible and unaltered between prompts. This stifles the
public’s capacity to improve the model’s performance or
tailor its code for a specialised task. There is a danger
that these safe and thoughtful models will be outpaced
by innovative (but perhaps reckless) open-source alter-
natives whose code can be directly altered by the public
[27].

Table 1 summarises this dilemma and the other trade-
offs that we’'ve discussed in the paper so far. Closed,
queryable, and open-source models each exhibit a signif-
icant drawback with respect to one aspect of a model’s
successful release. In the next section, we introduce a
novel solution, called Conversational Access (CA), that
attempts to retain the safety of queryable models while
allowing for increased user customisation.

3. Conversational Access

So far, this paper has considered a binary choice be-
tween a model’s internals being entirely accessible (open-
source) or inaccessible (closed and queryable). We pro-
pose CA models as a semi-accessible alternative that tries
to mitigate the drawbacks of existing approaches. CA

Capacity to Prevent | Public Capacity to Public Capacity to

Misuse and Rollback | Scrutinise and Develop and

Access Prompt the Model Customise the Model
Closed \/ \/ X X X X
Queryable \/ \/ X X
Open-Source X X \/\/ \/\/

Table 1

This table summarises the key distinctions between existing
approaches to model access. The most desirable condition
for each metric is denoted by two ticks, and the least by two
crosses. Adequate solutions are denoted by one tick.

models still possess the standard prompt-response ca-
pabilities of a queryable model, but, crucially, they also
allow the public to indirectly alter their code through
natural language interactions.

One possible natural language interface would allow
users to submit instructions (i.e., system prompts) which
the model reads before it starts future sessions with the
user. Alternatively, the user might engage in an open-
ended conversation with the model which would modify
its own code on their behalf. However, the exact details
are unimportant; what matters for CA access is that users
can modify the model through natural language instruc-
tions but without direct access to its code*. Now that
we’ve defined a CA model, in the rest of this section, we
explore their capabilities, benefits, and drawbacks.

N
.«»%«»
o (>}
Code LLM User

Figure 1: This illustrates how an LLM mediates interactions
between the user and the source-code in a CA model.

3.1. Capabilities of a CA Model

How much freedom should a CA model be given to cus-
tomise itself for the user? On the more conservative side,
the model would have no active role in responding to a
user’s instructions. In this case, the model would simply
read the system prompt and documents provided. For
example, if a user wanted to design a poker-playing LLM,
they would provide the model with a description of its
role and documents about the rules of poker.

Slightly more broadly, the model might also be allowed
to gather information in real time by freely browsing the

“Unlike the unrestricted access of open-source models, natural lan-
guage interactions are the only way that an individual can access
or modify a CA model’s code.

internet. For our scenario, this would involve the LLM ac-
tively searching for information related to poker, rather
than solely relying on the content which the user has
explicitly provided. OpenATI’s custom GPT [3] is an exist-
ing framework with these capabilities. They encourage
users to customise their model by "giving it instructions
and extra knowledge, and picking what it can do, like
searching the web, making images or analyzing data.”

These examples demonstrate how a CA model can
read contextual information, from user-specified or self-
selected sources, to improve its specificity. If the model
was also allowed to modify its own weights, then it could
digest this information through fine-tuning instead of
re-reading the same content before each conversation.
OpenAl already provides a platform [28] which enables
users to fine-tune their GPTs. However, this still relies
on user-selected datasets, as OpenAl doesn’t currently
allow models to fine-tune themselves on data that they
select autonomously.

At its extreme, a CA model could even modify its own
architecture or inference procedure. Suppose that a user
instructed an LLM to become a poker-player, leverag-
ing the most extensive self-modification capabilities. In
response, the model might adapt its architecture [29]
for poker-based fine-tuning, automatically improve its
prompts [30], or even engage in self-play [31] to boot-
strap its capabilities. These abilities sit beyond what the
current generation of language models can reliably and
autonomously achieve [23].

3.2. Capacity to Prevent Misuse and
Rollback Access

While LLM safeguards are improving, even the most ad-
vanced models can still produce harmful or inaccurate
outputs. Strengthening a model’s safeguards can help to
reduce these risks, but its functionally impossible to guar-
antee their safety. Given this inherent unreliability, it
might appear dangerous to extend a user’s influence over
a model beyond simple prompt-response dialogues. Pro-
viding users with a broad capacity to modify CA models
might increase the risk of them finding ways to circum-
vent its safeguards. Even with the most conservative
modifications, in which users are merely allowed to pro-
vide system prompts, there are numerous risks.

A study by Yu et al. [32] demonstrated the ease with
which users can extract confidential information from
customised GPTs. They found that when prompted, over
97% of models revealed their (potentially sensitive) sys-
tem prompt or context files. Alongside these risks of
information leakage, Tao et al. [33] outlined how custom-
GPTs could be specifically created with malicious intent.
They described system prompts that could lead custom-

GPTs to harm users by stealing their data, spreading mis-
information, promoting harmful websites, or co-opting
their devices for unlawful activities.

All of these risks result from a conservative level of cus-
tomisation where system prompts prepend conversations
between a model and a user. The potential for undesir-
able outcomes increases as the model is given a broader
capacity to modify its own code. As such, many scholars
[34, 35, 36, 37] are concerned that an LLM with an ex-
tensive capacity for self-modification could take actions
which are unpredictable and uncontrollable. Given all of
these risks, it may appear that providing the public with
conversational access to a model’s code is unacceptably
dangerous, with the wisest option being for developers
to take closed or queryable approach.

In addressing concerns regarding the misuse of CA mod-
els, we emphasise that granting the public any level of
access to LLMs inevitably results in some degree of mis-
use. Nevertheless, ‘the genie is out of the bottle’ and
increasingly capable open-source models with minimal
safeguards are now certain to emerge. The real danger
is that the most popular models are also harmful. Given
this reality, it is naive to indiscriminately prevent users
from personalising a model, as this approach risks los-
ing them to more customisable (but potentially reckless)
open-source alternatives. Instead, developers must seek
to produce models which are both popular and safe. We
propose that CA models at least provide a possibility of
achieving this lofty, but perhaps necessary, ambition.

In particular, the customisability of CA models can be
continually adjusted to ensure that they are both popular
and safe. At this early stage of technological progress,
we recommend that users are given relatively limited
capacity to customise their models. This may simply
allow the model to read system prompts. As safeguards
become more effective, it might also become tenable for
the model to be tailored in more radical ways, for ex-
ample by letting it fine-tune itself or directly modify its
own architecture [29]. Its even possible that CA models
themselves could drive the safeguarding improvements
that they require to become more customisable.

With CA-release, unlike open-source approaches, mod-
ifications to the model are conducted through a user
interface, which the company can monitor, control, and
restrict>. Consequently, every prompt that is found to in-
duce harmful modifications can be flagged and leveraged
to improve the company’s ability to detect and mitigate
malicious activity [33, 38]. Specifically, flagged users can
be barred from the platform and their prompts could
be used to train a classifier for identifying (and block-

SDevelopers’ ability to restrict model access post-release is important,
as it allows them to retract problematic model capabilities if their
harm exceeds expectations.

ing) other malicious actors. By leveraging this wealth of
data, CA providers might out-pace their competitors at
developing broadly effective safeguards.

In summary, we acknowledge the concerns outlined
above and the significant work required to improve LLM
safeguards. Nevertheless, we argue that the controlled
customisability of CA models uniquely enables their func-
tionality to match the sophistication of their safeguards.
Moreover, by using harmful prompts as training data, CA
models can gradually improve at detecting and mitigat-
ing malicious user activity. Therefore, we reassert that
CA models can form a central part of a popular and safe
LLM ecosystem.

3.3. Public Capacity to Prompt and
Scrutinise the Model

A user’s ability to prompt and scrutinise a CA model
is arguably comparable to their ability to do so with
a queryable model. Specifically, they afford users the
same capacity to engage in prompt-response dialogues,
which can elicit helpful information or test the model
for various biases. Unfortunately, examining a model for
biases solely via prompt-response pairs is a cumbersome
and imperfect science. As such, by preventing users
from directly probing their code, CA models (much like
queryable approaches) don’t quite facilitate the scrutiny
that’s offered by open-source approaches®.

Moreover, an individual user’s ability to prompt and scru-
tinise a CA model is contingent on their ‘good behaviour’,
as defined by the Al company which controls the APL
Therefore, some may argue that CA models produce the
illusion of distributed power, while private companies
maintain control. Perhaps open-sourcing is the only way
to truly ‘democratise’ a language model. Addressing
these concerns, we reiterate our claim that the decen-
tralised nature of open-source models raises the risk of
misuse. At least for this stage of technological develop-
ment, a centralised authority is well-placed to safeguard,
monitor, and restrict a model’s actions.

Nevertheless, companies which provide highly capable
LLMs still have a duty seek external input and scrutiny, a
goal they can pursue without resorting to open-sourcing.
In order to ‘democratise’ [10] the control of Al, we sup-
port the suggestions made by Serger et al. [11], three of
which we highlight below. Firstly, ATl companies could
elicit public input for complex normative decisions, giv-
ing the end-user a seat at the table. Secondly, they could

®An important caveat is a mechanism (which CA models could incor-
porate) for semi-directly probing a model’s internals, as proposed
by Shevlane [39], where “the external researcher uploads to the de-
veloper a tool that automates the interpretability analysis, then the
developer runs that tool on the model and sends back the feedback”

incorporate more democratic organizational structures,
such as public benefit corporations. This would provide
a “clearer legal standing to make decisions about insti-
tutional structure that aim to maximize public benefit”
Thirdly, there is a greater role for democratic govern-
ments in restricting and auditing the development and
release of highly capable language models [40].

The suggestions outlined above provide an alternative
means for external input and scrutiny when open-source
access isn’t feasible. Yet, there remains a subtle danger
to CA models which these suggestions cannot solve. In
particular, as CA models block users from directly scrutin-
ising their code, it might be difficult to determine whether
modifications are truly aligned with a user’s intentions.
For example, a user could instruct their model to "Read
through law reports and become an accurate judge” The
model might respond by incorporating racial classifiers
into their architecture, which could improve accuracy by
perpetuating systematic biases.

In this scenario, the model has changed its behaviour in
response to the user’s instruction, but not in alignment
with their intentions. This misalignment is especially
difficult to detect when using a CA model, since their
internals are hidden from the user. How might we ensure
that CA models are well-aligned if we can’t scrutinise
their code? One approach [41] that’s emerged for im-
proving alignment involves developing models which
are uncertain, and even skeptical, about whether a user’s
input accurately describes their true intentions. The in-
tuition is that this uncertainty might incentivise a CA
model to consult users when it’s unsure about whether
its modifications match their intentions. In our legal ex-
ample, one would hope that the model identifies (and
attempts to clarify) that the user might also have an un-
observed desire to avoid prejudice.

In summary, we observed that CA models can be
prompted and scrutinised in much the same way as a
queryable approach. Furthermore, despite the absence of
publicly released code, companies can still ‘democratise’
a CA model via public involvement or alternative organi-
sational structures. Finally, we examined the alignment
problem for LLMs, highlighting the challenge of scrutinis-
ing whether their behavior matches the user’s intentions.
In response, we suggested that CA models could act with
uncertainty about their user’s intentions, and might even
be prudent to scrutinise the users themselves.

3.4. Public Capacity to Develop and
Customise the Model
CA models are at least as customisable as closed and

queryable approaches. Closed models prevent users from
even prompting them, let alone modifying their code.

Queryable models can adapt (in-context) to a specific
prompt; however, these changes are transient and the
underlying code remains the same. In contrast, conver-
sations with CA models can permanently alter aspects
of their code, including their system prompts, weights,
or inference procedure. There is even an argument that
CA models are more customisable than open-source ap-
proaches. In particular, CA-release lowers the barrier to
entry for model customisation.

Anyone can change the code of a CA model simply by
talking to it, but only an expert can modify the code of
an open-source model. Unfortunately, the argument that
CA-release is at least as customisable as open-sourcing is
damaged by the following asymmetry. An adept program-
mer can transform an open-source model into a CA one,
but the reverse is clearly impossible. As such, it’s evident
that open-source models are strictly more customisable
tha CA approaches. Nevertheless, by convincingly chal-
lenging open-source models in this regard, CA-release
shows itself to be highly customisable approach that isn’t
far behind open-sourcing.

We have just observed that CA models fall between
queryable and open-source approaches with regards to
customisability. However, the open-source community
not only excels at customisation but also has a strong
tradition of research and development. For instance, they
were central to recent breakthroughs, such as Low Rank
Adaptation’ [16], a method that reduces the cost of fine-
tuning. Developers inability to directly tinker with the
code of a CA model would hinder similar research efforts.
As such, it’s hard to imagine CA models generating the
same culture of research and development that open-
source approaches so often produce.

In summary, while queryable models exhibit a certain
level of rigidity, CA-release not only facilitates, but also
reduces the barrier to entry for user customisation. Nev-
ertheless, CA models are clearly not quite as flexible,
customisable, and research-conducive as an open-source
approach. For this reason, we suggest that they pro-
vide the public with an adequate capacity to develop and
customise their models, albeit one that is surpassed by
open-source models.

3.5. Summarising CA Models

In this section, we introduced CA-release, an approach
where users can modify a model’s underlying behaviour
through natural language interactions alone. The con-
trolled customisability of CA models allow them to (at

"LoRa involves learning a pair of low-dimensional (i.e., cheap to
calculate or fine-tune) weight matrices which complement a model’s
original high-dimensional (i.e., expensive to calculate or fine-tune)
weight matrix, thereby improving its performance.

least in theory) meet an ever-changing set of ethical ex-
pectations and market demands. Therefore, in Table 2, we
assign no critical failures to CA models, suggesting that
they mostly retain the desirable properties of a queryable
approach while enabling a degree of customisation closer
to open-source approaches.

Assigning all ‘ticks’ to CA-release does not suggest that
we believe it is always the best approach. Although CA
models find their niche in situations that require a trade-
off between customisation and safety, we accept that
in many cases such trade-offs might not be appropriate.
When developing an LLM that is trained on classified
information, a model’s propensity to leak this data to ma-
licious actors may take priority over other factors, mak-
ing a closed approach the most suitable. Alternatively,
smaller ‘plug-and-play’ LLMs that enable researchers to
experiment with novel ideas are perhaps most suited for
open-sourcing.

Capacity to Prevent | Public Capacity to Public Capacity to

Misuse and Rollback | Scrutinise and Develop and

Access Prompt the Model Customise the Model
Closed N4 X x X X
Queryable \/ \/ X X
Conversational
Access \/ \/ \/
Open-Source X X \/\/ \/\/

Table 2

This table adds CA to the list of existing approaches for model
accessibility given in Table 1. It suggests that CA models can
perform adequately across all metrics.

4. Related Literature

The main focus of this paper has been ‘Conversational
Access to an LLM’s internals’. In this section, we consider
the literature regarding three related topics:

1. Access to an LLM’s Internals: In Section 2, we sim-
plified the existing body of work on LLM release
into three categories: open-source, queryable,
and closed. Below, we consider some important
proposals which sit outside of this simple picture.

2. Conversational Access to an Algorithm: There
already exists a large body of research into
conversation-mediated human-computer interac-
tions, albeit not with regards to an LLM’s source
code. In this section, we explore the case of con-
versational recommendation systems.

3. Copilots for an LLM’s Code: CA models turn an
LLM into a intermediary between the user and
its source code. We now consider an alternative
possibility where LLM assistants (i.e., Copilots)
help users to write and understand their code.

4.1. Access to an LLM’s Code

Downloadable models [4], such as Craiyon, allow users
to download the model’s internals through a user inter-
face, subject to approval. This differs from both closed
and queryable models, which restrict source code access
to a single company or lab. It also differs from open-
souring, where the internals are made publicly accessi-
ble, without exception. In theory, downloadable release
can help to stress-test an LLM before it’s released more
broadly. Nevertheless, we express our concern that down-
loadable release is inherently unstable and can prema-
turely collapse into open-sourcing. Specifically, it rests
on the assumption that none of the model-holders will
disseminate, or even accidentally leak, the code. For this
reason, in the main body of this paper we instead focused
on closed, queryable, and open-source models, all three
of which we view as more stable.

Structured Access [39, 42] allows users to engage in
“controlled, arm’s length interactions with their Al sys-
tems,” subject to approval. This arm’s length approach
prevents users from obtaining the information required
to recreate and disseminate the model themselves, which
was our concern with downloadable release. An exam-
ple of structured access is GPT-3 [43], which allows ap-
proved users to fine-tune a GPT-3 model or integrate
it into their own application using OpenAI’s API. More
broadly, many of the approaches that we’ve examined so
far could be considered as a form of structured access,
including queryable and CA models. Notably, CA-release
is on this list as it mediates (i.e., structures) a user’s ac-
cess to the model’s source code through natural language
conversations, a rather stark example of an arm’s length
interaction.

Staged Disclosure [39, 4, 44] involves gradually releas-
ing the model’s components over time. Examples of
this include GPT-2 [45], whose parameters were origi-
nally released in four stages, with the number of released
parameters increasing at each stage. This gradual de-
ployment allows developers to test their safeguards in a
low-capability regime before releasing their most capa-
ble models. We view staged disclosure as a coarse tactic
that can be applied alongside the methods that we’ve dis-
cussed so far. In particular, for almost any level of access,
companies might be wise to initially release smaller ver-
sions of their model. As such, we view staged disclosure
as orthogonal to the approaches explored in the main
body of this paper and express our hope that it can be
employed in tandem with CA-release.

4.2. Conversational Access to an
Algorithm

The public’s capacity to modify algorithms via natural
language has the potential to transform software release.
One particularly active area of research is whether LLMs
can mediate natural language interactions between a
user and their recommendation system (RS). Typically,
an RS selects the content that a user consumes whilst
online, based on factors like their social network and
search history [46]. They are perhaps most recognisable
for their role in social media algorithms, where they
are trained to maximise user engagement, keeping our
attention for as long as possible. This can produce an
undesirable [47, 48] (yet addictive [49]) experience for
the user, over which they have little recourse for control
[50].

In theory, by conversing with an LLM, individuals could
continually modify the incentives of their RS to align
with their current mood or interests. For example, a
user could request more scientific content when they
feel inquisitive and less negative content when they feel
vulnerable, taking back control over their digital expe-
rience. In the words of Lazar [51] “They could provide
recommendation and filtering without surveillance and
engagement-optimisation” But is there evidence that
conversations with an LLM can actually improve user’s
recommendations?

A recent paper by researchers at Netflix [52] demon-
strated that GPT-4 can generate highly accurate movie
recommendations when provided with a system prompt
that details its role as an RS. Similarly, Google [53] re-
cently explored whether the YouTube RS could be im-
proved by incorporating "an LLM to match preferences
extracted from the context of the conversation to item
metadata” In this example, a user’s conversation with
an LLM (effectively) modifies the functionality of an RS,
demonstrating that the tenets of CA models can be ap-
plied to software release more broadly.

4.3. Copilots for an LLM’s Code

The main body of this paper examined whether LLMs
could mediate modifications to a model’s source code.
However, with the advent of products like GitHub Copi-
lot [54], there is a growing appetite for LLMs designed
to assist users in modifying their code. In particular, as-
sistance is distinct from mediation in that the user main-
tains direct control over their code while also having
the option to converse with their copilot for suggestions
and explanations [55]. As such, among the approaches
covered in this paper, copilots could only be applied to
models that are directly modifiable, namely those that are
downloadable or open-source. While open-sourcing the

code of a highly-capable LLM might pose unacceptable
risks, copilots are well-suited for assisting users to mod-
ify smaller (low-capability) models intended for research
or education [56, 57].

5. Conclusion

Closed, queryable, and open-source approaches all fail
to produce a customisable yet safe release strategy. In
this paper we proposed conversational access as an ap-
proach that (ideally) permits users to tailor a model to
their individual needs, without jeopardising the security
of the underlying code. In particular, a user’s capacity
to modify a CA model can be controlled and continu-
ally adjusted to match the ever-changing demands for a
customisable yet safe LLM ecosystem. Due to this flexi-
bility, conversational access appears to be an appropriate
release strategy for a broad spectrum of highly-capable
LLMs.

Regardless of these benefits, one thing is certain: There
is no silver bullet for ensuring that language models are
both helpful and harmless in every situation [58, 59].
When developing or regulating LLMs, practitioners and
policymakers must thoughtfully consider the balance
between democratisation, innovation, and safety, with no
simple solutions. Rather than a comprehensive solution,
we hope that conversational access can serve as one tool
out of many for navigating the release of highly capable
language models.

References

[1] S.Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke,
E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lund-
berg, et al, Sparks of artificial general intelli-
gence: Early experiments with gpt-4, arXiv preprint
arXiv:2303.12712 (2023).

[2] J. Whittlestone, A. Ovadya, The tension between

openness and prudence in ai research, arXiv

preprint arXiv:1910.01170 (2019).

OpenAl, Introducing gpts, https://openai.com/blog/

introducing-gpts#OpenAl, 2023.

I. Solaiman, The gradient of generative ai release:

Methods and considerations, in: Proceedings of the

2023 ACM Conference on Fairness, Accountability,

and Transparency, 2023, pp. 111-122.

[5] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoff-
mann, F. Song, J. Aslanides, S. Henderson, R. Ring,
S. Young, et al., Scaling language models: Methods,
analysis & insights from training gopher, arXiv
preprint arXiv:2112.11446 (2021).

[6] G. Brockman, A. Eleti, E. Georges, J. Jang, L. Kil-

(3]
(4]

(11]

(12]

(13]

(17]

(18]

patrick, R. Lim, L. Miller, M. Pokrass, Introducing
chatgpt and whisper apis, OpenAl Blog (2023).

B. Wang, A. Komatsuzaki, Gpt-j-6b: A 6 billion
parameter autoregressive language model, https://
github.com/kingoflolz/mesh-transformer-jax, 2021.
L. M. Hepburn, D. Hemenway, Firearm availability
and homicide: A review of the literature, Aggres-
sion and Violent behavior 9 (2004) 417-440.

T. Reed, D. Stillman, The nuclear express: A politi-
cal history of the bomb and its proliferation, Zenith
press, 2010.

E. Seger, A. Ovadya, D. Siddarth, B. Garfinkel,
A. Dafoe, Democratising ai: Multiple meanings,
goals, and methods, in: Proceedings of the 2023
AAAI/ACM Conference on Al Ethics, and Society,
2023, pp. 715-722.

E. Seger, N. Dreksler, R. Moulange, E. Dardaman,
J. Schuett, K. Wei, C. Winter, M. Arnold, S. O.
hEigeartaigh, A. Korinek, et al, Open-sourcing
highly capable foundation models: An evalua-
tion of risks, benefits, and alternative methods for
pursuing open-source objectives, arXiv preprint
arXiv:2311.09227 (2023).

A. Engler, How open-source software shapes ai
policy (2021).

H. Touvron, T. Lavril, G. Izacard, X. Martinet,
M.-A. Lachaux, T. Lacroix, B. Roziére, N. Goyal,
E. Hambro, F. Azhar, et al., Llama: Open and effi-
cient foundation language models, arXiv preprint
arXiv:2302.13971 (2023).

J. Spisak, S. Edunov, The llama ecosystem:
Past, present, and future, https://ai.meta.com/blog/
llama-2-updates-connect-2023/, 2023.

R. Blumenthal, J. Hawley, Meta llama model leak
letter, https://www.blumenthal.senate.gov/imo/
media/doc/06062023metallamamodelleakletter.pdf,
2023.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li,
S. Wang, L. Wang, W. Chen, Lora: Low-rank adap-
tation of large language models, arXiv preprint
arXiv:2106.09685 (2021).

T. Tu, A. Palepu, M. Schaekermann, K. Saab, J. Frey-
berg, R. Tanno, A. Wang, B. Li, M. Amin, N. Toma-
sev, et al., Towards conversational diagnostic ai,
arXiv preprint arXiv:2401.05654 (2024).

X. 01, Y. Zeng, T. Xie, P.-Y. Chen, R. Jia, P. Mittal,
P. Henderson, Fine-tuning aligned language models
compromises safety, even when users do not intend
to!, arXiv preprint arXiv:2310.03693 (2023).

P. Gade, S. Lermen, C. Rogers-Smith, J. Ladish, Badl-
lama: cheaply removing safety fine-tuning from
llama 2-chat 13b, arXiv preprint arXiv:2311.00117
(2023).

F. Urbina, F. Lentzos, C. Invernizzi, S. Ekins, A
teachable moment for dual-use, Nature machine

https://openai.com/blog/introducing-gpts#OpenAI
https://openai.com/blog/introducing-gpts#OpenAI
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://ai.meta.com/blog/llama-2-updates-connect-2023/
https://ai.meta.com/blog/llama-2-updates-connect-2023/
https://www.blumenthal.senate.gov/imo/media/doc/06062023metallamamodelleakletter.pdf
https://www.blumenthal.senate.gov/imo/media/doc/06062023metallamamodelleakletter.pdf

(22]

intelligence 4 (2022) 607-607.

E. H. Soice, R. Rocha, K. Cordova, M. Specter, K. M.
Esvelt, Can large language models democratize
access to dual-use biotechnology?, arXiv preprint
arXiv:2306.03809 (2023).

L. Weidinger, J. Mellor, M. Rauh, C. Griffin, J. Ue-
sato, P.-S. Huang, M. Cheng, M. Glaese, B. Balle,
A. Kasirzadeh, et al., Ethical and social risks
of harm from language models, arXiv preprint
arXiv:2112.04359 (2021).

M. Kinniment, L. J. K. Sato, H. Du, B. Goodrich,
M. Hasin, L. Chan, L. H. Miles, T. R. Lin, H. Wijk,
J. Burget, et al., Evaluating language-model agents
on realistic autonomous tasks, arXiv preprint
arXiv:2312.11671 (2023).

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya,
F. L. Aleman, D. Almeida, J. Altenschmidt, S. Alt-
man, S. Anadkat, et al,, Gpt-4 technical report,
arXiv preprint arXiv:2303.08774 (2023).

R. Fang, R. Bindu, A. Gupta, Q. Zhan, D. Kang, LIm
agents can autonomously hack websites, arXiv
preprint arXiv:2402.06664 (2024).

Y. Wan, W. Wang, P. He, J. Gu, H. Bai, M. R. Lyu,
Biasasker: Measuring the bias in conversational
ai system, in: Proceedings of the 31st ACM Joint
European Software Engineering Conference and
Symposium on the Foundations of Software Engi-
neering, 2023, pp. 515-527.

D. Milmo, Google engineer warns it could lose out
to open-source technology in ai race, The Guardian
(2023).

OpenAl, Welcome to the openai platform., https:
//platform.openai.com, (visited January 17, 2020).
A. Tornede, D. Deng, T. Eimer, J. Giovanelli, A. Mo-
han, T. Ruhkopf, S. Segel, D. Theodorakopoulos,
T. Tornede, H. Wachsmuth, et al., Automl in the
age of large language models: Current challenges,
future opportunities and risks, arXiv preprint
arXiv:2306.08107 (2023).

C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou,
X. Chen, Large language models as optimizers,
arXiv preprint arXiv:2309.03409 (2023).

Z. Chen, Y. Deng, H. Yuan, K. Ji, Q. Gu, Self-
play fine-tuning converts weak language mod-
els to strong language models, arXiv preprint
arXiv:2401.01335 (2024).

J. Yu, Y. Wu, D. Shu, M. Jin, X. Xing, Assessing
prompt injection risks in 200+ custom gpts, arXiv
preprint arXiv:2311.11538 (2023).

G. Tao, S. Cheng, Z. Zhang, J. Zhu, G. Shen,
X. Zhang, Opening a pandora’s box: Things you
should know in the era of custom gpts, arXiv
preprint arXiv:2401.00905 (2023).

D. Hendrycks, Natural selection favors ais over
humans, arXiv preprint arXiv:2303.16200 (2023).

(38]

(48]

R. V. Yampolskiy, Analysis of types of self-
improving software, in: Artificial General Intel-
ligence: 8th International Conference, AGI 2015,
AGI 2015, Berlin, Germany, July 22-25, 2015, Pro-
ceedings 8, Springer, 2015, pp. 384-393.

N. Bostrom, The superintelligent will: Motivation
and instrumental rationality in advanced artificial
agents, Minds and Machines 22 (2012) 71-85.

A. Ecoffet, J. Clune, J. Lehman, Open questions
in creating safe open-ended ai: tensions between
control and creativity, in: Artificial Life Conference
Proceedings 32, MIT Press One Rogers Street, Cam-
bridge, MA 02142-1209, USA journals-info ..., 2020,
pp. 27-35.

Z. Wei, Y. Wang, Y. Wang, Jailbreak and guard
aligned language models with only few in-context
demonstrations, arXiv preprint arXiv:2310.06387
(2023).

T. Shevlane, Structured access: an emerging
paradigm for safe ai deployment, arXiv preprint
arXiv:2201.05159 (2022).

M. Brundage, S. Avin, J. Wang, H. Belfield,
G. Krueger, G. Hadfield, H. Khlaaf, J. Yang, H. Toner,
R. Fong, et al., Toward trustworthy ai development:
mechanisms for supporting verifiable claims, arXiv
preprint arXiv:2004.07213 (2020).

L. Gabriel, V. Ghazavi, The challenge of value align-
ment: From fairer algorithms to ai safety, arXiv
preprint arXiv:2101.06060 (2021).

B. S. Bucknall, R. F. Trager, Structured access for
third-party research on frontier ai models: Inves-
tigating researchers’ model access requirements
(2023).

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell, et al., Language models are few-shot
learners, Advances in neural information process-
ing systems 33 (2020) 1877-1901.

I. Solaiman, M. Brundage, J. Clark, A. Askell,
A.Herbert-Voss, J. Wu, A. Radford, G. Krueger, J. W.
Kim, S. Kreps, et al., Release strategies and the
social impacts of language models, arXiv preprint
arXiv:1908.09203 (2019).

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
L Sutskever, et al., Language models are unsuper-
vised multitask learners, OpenAlI blog 1 (2019) 9.
M. T. Center, Our approach to facebook feed rank-
ing, https://transparency.fb.com/en-gb/features/
ranking-and-content/, 2023.

J. M. Twenge, Increases in depression, self-harm,
and suicide among us adolescents after 2012 and
links to technology use: possible mechanisms, Psy-
chiatric Research and Clinical Practice 2 (2020)
19-25.

P. Tornberg, How digital media drive affective

https://platform.openai.com
https://platform.openai.com
https://transparency.fb.com/en-gb/features/ranking-and-content/
https://transparency.fb.com/en-gb/features/ranking-and-content/

[59]

polarization through partisan sorting, Proceedings
of the National Academy of Sciences 119 (2022)
€2207159119.

H. Allcott, M. Gentzkow, L. Song, Digital addiction,
American Economic Review 112 (2022) 2424-2463.
J. Bullock, A. Korinek, @ elonmusk and@ twit-
ter: The problem with social media is misaligned
recommendation systems, not free speech (2022).
S. Lazar, Frontier ai ethics (2024).

Z.He, Z.Xie, R. Jha, H. Steck, D. Liang, Y. Feng, B. P.
Majumder, N. Kallus, J. McAuley, Large language
models as zero-shot conversational recommenders,
in: Proceedings of the 32nd ACM international con-
ference on information and knowledge manage-
ment, 2023, pp. 720-730.

L. Friedman, S. Ahuja, D. Allen, T. Tan, H. Sidahmed,
C. Long, J. Xie, G. Schubiner, A. Patel, H. Lara,
et al., Leveraging large language models in con-
versational recommender systems, arXiv preprint
arXiv:2305.07961 (2023).

S. Peng, E. Kalliamvakou, P. Cihon, M. Demirer,
The impact of ai on developer productivity: Ev-
idence from github copilot, arXiv preprint
arXiv:2302.06590 (2023).

A. Sellen, E. Horvitz, The rise of the ai co-pilot:
Lessons for design from aviation and beyond, arXiv
preprint arXiv:2311.14713 (2023).

A. Sarkar, Will code remain a relevant user in-
terface for end-user programming with generative
ai models?, in: Proceedings of the 2023 ACM SIG-
PLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and
Software, 2023, pp. 153-167.

B. A. Becker, P. Denny, J. Finnie-Ansley, A. Luxton-
Reilly, J. Prather, E. A. Santos, Programming is
hard-or at least it used to be: Educational oppor-
tunities and challenges of ai code generation, in:
Proceedings of the 54th ACM Technical Sympo-
sium on Computer Science Education V. 1, 2023, pp.
500-506.

A. Askell, Y. Bai, A. Chen, D. Drain, D. Gan-
guli, T. Henighan, A. Jones, N. Joseph, B. Mann,
N. DasSarma, et al., A general language assis-
tant as a laboratory for alignment, arXiv preprint
arXiv:2112.00861 (2021).

Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen,
N. DasSarma, D. Drain, S. Fort, D. Ganguli,
T. Henighan, et al., Training a helpful and harmless
assistant with reinforcement learning from human
feedback, arXiv preprint arXiv:2204.05862 (2022).

	1 Introduction
	2 Background on Model Access
	2.1 Closed Models
	2.2 Open-Source Models
	2.3 Queryable Models

	3 Conversational Access
	3.1 Capabilities of a CA Model
	3.2 Capacity to Prevent Misuse and Rollback Access
	3.3 Public Capacity to Prompt and Scrutinise the Model
	3.4 Public Capacity to Develop and Customise the Model
	3.5 Summarising CA Models

	4 Related Literature
	4.1 Access to an LLM's Code
	4.2 Conversational Access to an Algorithm
	4.3 Copilots for an LLM's Code

	5 Conclusion

